NATIONAL INSTITUTE OF TECHNOLOGY, SRINAGAR

DEPARTMENT OF MECHANICAL ENGINEERING
B.Tech. $8^{\text {th }}$ Semester (Major) Examination, Spring-2019

Theory of Elasticity (MEC ~ 803)
[Total No. of Questions: 5]
Max. Marks: 60
Note:

- Attempt any four (4) questions.
- Assume any missing data suitably.
Q. 1 (a) What are the assumptions made in theory of elasticity? Explain how stress is a tensor quantity.
(b) Explain the Airy's stress function. Derive bi-harmonic equation in $\mathbf{2 + 3} \mathbf{C O 2}$ Cartesian coordinates for 2D stress states.
(c) Explain the significance of compatibility equation, derive the same for a $\quad \mathbf{2 + 3} \mathbf{C O 2}$ strain field.
Q. 2 (a) Derive the solution of two dimensional problems by the use of $8 \quad \mathrm{CO} 2$ polynomials.
(b) Find graphically the principal strains and their directions for rosette measurements

$$
\begin{gathered}
\varepsilon_{\varphi}=2 \times 10^{-3} \varepsilon_{\alpha+\varphi}=1.35 \times 10^{-3} \varepsilon_{\alpha+\beta+\varphi=0.95 \times 10^{-3}} \text { inch per inch } \\
\text { where } \alpha=\beta=\varphi=45^{\circ}
\end{gathered}
$$

Q. 3 (a) Explain how the following principle are used to solve the problems of theory of elasticity in practice:

2+3 CO1
i. Generalized Hooke's Law
ii. Saint Venant Principle
iii. Fourier Series Solution
(b) A large plate is subjected to a line of uniform distribution of load acting on the edge as indicated. Determine the Airy's stresses in polar coordinates.

Boundary Conditions

$$
\sigma_{\theta}=\tau_{r \theta}=0
$$

$$
\text { @ } \theta=0, \pi
$$

Q. 4 (a) Derive Winkler-Bach formula for curved beams.
(b) Investigate what problem of plane stress is satisfied by the stress function

$$
\varphi=\frac{3 F}{4 d}\left[x y-\frac{x y^{3}}{3 d^{2}}\right]+\frac{p}{2} y^{2}
$$

applied to the region included in $\mathrm{y}=0, \mathrm{y}=\mathrm{d}, x=0$ on the side x positive.
Q. 5 (a) Show that the following stress function satisfies the boundary condition in a beam of rectangular cross-section of width $2 h$ and depth d under a total shear force W.

$$
\phi=-\left[\frac{W}{2 h d^{3}} x y^{2}(3 d-2 y)\right]
$$

Derive expressions for radial and tangential stresses for a plate with a circular hole and subjected to uniform tensile stress S in x -direction.

