NATIONAL INSTITUTE OF TECHNOLOGY, SRINAGAR DEPARTMENT OF MECHANICAL ENGINEERING B.Tech. 8th Semester (Major) Examination, Spring-2019 <u>Theory of Elasticity (MEC ~ 803)</u>

-	-	[Total No. of Printed Pages: 1] Max. Time Allowed: 3 hour	
	• Attempt any four (4) questions.		
	• Assume any missing data suitably.		
Q.1 (a)	What are the assumptions made in theory of elasticity? Explain how stress is a tensor quantity.	2+3	CO1
(b)	Explain the Airy's stress function. Derive bi-harmonic equation in Cartesian coordinates for 2D stress states.	2+3	CO2
(c)	Explain the significance of compatibility equation, derive the same for a strain field.	2+3	CO2
Q.2 (a)	Derive the solution of two dimensional problems by the use of polynomials.	8	CO2
(b)	Find graphically the principal strains and their directions for rosette measurements	7	CO1
	$\varepsilon_{\phi = 2 x 10}^{-3} \varepsilon_{\alpha + \phi} = 1.35 x 10^{-3} \varepsilon_{\alpha + \beta + \phi} = 0.95 x 10^{-3}$ inch per inch		
	where $\alpha = \beta = \phi = 45^{\circ}$	• •	001
Q.3 (a)	Explain how the following principle are used to solve the problems of theory of elasticity in practice:	2+3 +3	CO1 CO2
	i. Generalized Hooke's Lawii. Saint Venant Principleiii. Fourier Series Solution		
(b)	A large plate is subjected to a line of uniform distribution of load acting on the edge as indicated. Determine the Airy's stresses in polar coordinates.	7	CO4
	$ \begin{array}{c} P \\ P \\$		
Q.4 (a)	Derive Winkler-Bach formula for curved beams.	7	
X (m)			
(b)	Investigate what problem of plane stress is satisfied by the stress function $\varphi = \frac{3F}{4d} \left[xy - \frac{xy^3}{3d^2} \right] + \frac{p}{2} y^2$	8	CO3
Q.5 (a)	applied to the region included in $y = 0$, $y = d$, $x = 0$ on the side x positive. Show that the following stress function satisfies the boundary condition in a beam of rectangular cross-section of width $2h$ and depth d under a total shear force W.	8	CO3

$$\phi = -\left[\frac{W}{2hd^3}xy^2(3d-2y)\right]$$

(b) Derive expressions for radial and tangential stresses for a plate with a circular hole and subjected to uniform tensile stress S in x-direction.
 7 CO4